Community-specific Cost-benefit Evaluation Framework for Beneficial Electrification

locky Mountai

Brian Tholl, Fort Collins Utilities Susan Bartlett, Longmont Power & Communications Justin Spencer, Apex Analytics

September 27, 2022, Session 1

ocku Mounta

Aspirational community carbon and energy goals

Fort Collins – Our Climate Future

Rocky Mountan

- 80 % greenhouse gas (GHG) emissions reduction goal by 2030
- 100% renewable electricity goal by 2030
- 20+ year commitment to Climate Action, focusing on Mitigation, Resilience, Equity

Longmont

- 66% GHG emissions reduction goal by 2030
- 100% renewable electricity goal by 2030
- Climate

Action Recommendations Report and Building Electrification Plan

Opportunity: Buildings make up ~66% of GHG emissions in Fort Collins and ~80% in Longmont **Challenge:** Affordably decarbonize buildings

2040 building greenhouse gas emissions

Residential end uses make up about 75% of building gas consumption.

End Use	Existing/New	% of 2040 Residential GHG Emissions
Space heating	Existing	52%
Space heating	New	23%
Water heating	Existing	16%
Water heating	New	6%
Other	Existing	2%
Other	New	1%

ocky Mountan

Focus on <u>existing residential</u> <u>space heating</u>

- Progress toward community GHG emissions reduction goals
- Build in future grid flexibility
- Good place to start!

Research approach

National Inventory of Electrification Incentive Programs

Rocky Mountai

tility Exchange

Local Customer and Contractor Research on Heat Pumps

The set of the

Cost effectiveness, net benefits, and carbon abatement costs

Recommendations for residential electrification measures

Development of community test

Problem

Rocky Mounta

- Building electrification is different because electricity consumption increases
- Traditional benefit-cost approaches not great for our context

Solution

- Follow National Standard Practice Manual (NSPM) guidance for jurisdiction-specific test
- Work with stakeholders to agree on what to include

How do we keep people warm during extremely cold weather?

Capacity of heat pumps drops

Rocku Mounta

- Hybrid heat pumps use existing gas furnace (0 grid impacts)
- Full electrification heat pumps use electric resistance (10 kW+/home)

Measure Screening Criteria

Rocky Mountai

Ratepayer Impact Test

Community Test

GHG Abatement Cost

Bill Savings and Incremental Cost

Lifetime GHG Impacts

Winter Peak Demand Impact

Best opportunity: Replace burned out or new CAC with heat pump, leaving furnace for cold weather

Rocky Mountai

Pros: Only costs ~\$200-\$500 extra, saves 50-80% of load Cons: Only applicable in situations where somebody was already buying a new CAC

Full displacement with electric resistance = expensive for the utility and ratepayers

Rocky Mountan

- Fort Collins/Longmont will become winter peaking sometime in 2030s.
- Each additional kW of winter peak costs \$100+/year to meet with gas combustion turbines
- Present value of capacity cost for 10 kW electric resistance was calculated as \$17,000. Electric resistance heat is still a bad idea.

Adding heat pumps to homes with gas and without AC is a tough sell

There is no economic case to the customer with gas without the cooling benefits.

Rocky Mounta

Cold climate heat pumps cost A LOT

Rocky Mountai

2022 Model S Model S Plaid Less than 50 mile odometer Denver	\$152,990 \$2,332 /mo ^① No Est. Transport Fee		2020 Model 3 Model 3 Standard Range Plus Rear-Wheel Drive 15,052 mile odometer AURORA, CO	\$48,000 \$707 /mo (No Est Transport Fee
		VS		R
				(
1.99s 200mp 0-60 mph Top Speed	h 396 mi d range (EPA est.)		5.3s 140mph	250mi

Consider for 100% displacement, but still need to solve backup heat problem

Phased recommendations

Phase 1: Build market awareness, customer knowledge, and contractor capability

- What would it take for contractors to almost always install a heat pump instead of an air conditioner?
- Offer contractor training and downstream rebates for ALL heat pumps – not just cold climate
- Prioritize broad-based hybrid solutions

Phased recommendations

Phase 2: Throttle widespread adoption in most cost-effective applications

- Adopt codes for new construction
- Build midstream offerings (manufacturers/distributors)
- Improve heat pump economics through rate design

Phased recommendations

Phase 3: Push toward zero carbon

- Adopt codes for heat pumps/heat pump water heaters in all new installations
- Require all-electric new homes
- Could happen sooner outside of regular code review/adoption cycles

What's next...

ocku Mounta

- Program and incentive redesign and development
- Continued contractor training and engagement/customer education
- Continued Building Code evaluations for each community
 - Fort Collins zero carbon building code by 2030;
 - Boulder County Code Cohort recommendations for zero carbon new construction by 2030 in Longmont
- Distribution impacts study using transformer-level AMI
 - Inform Fort Collins Utilities' design standards, update 2023 Electric Capacity fees
- And IRA impacts...

Thank you! Enjoy the Exchange!

• Brian Tholl, Fort Collins Utilities, btholl@fcgov.com

ocku Mountai

- Susan Bartlett, Longmont Power & Communications, susan.Bartlett@longmontcolorado.gov
- Justin Spencer, Apex Analytics, justins@apexanalyticsllc.com

Appendix & backup slides

August and an and an and

Rocky Mountain Utility Exchange

Market awareness: Contractors know something about heat pumps; customers do not!

Contractors:

- Are aware of heat pump technology
- View heat pumps as opportunity
- Often recommend heat pumps for AC retrofits

• Customers:

- 82% either <u>not very</u> or <u>not at all</u> familiar with heat pumps
- Most replace equipment on failure and like-for-like (50% don't consider options)
- Only 10% had contractors suggest heat pumps

Existing space heating, water heating, and new buildings account for over 95% of 2040 GHG emissions from buildings

Full electrification of heating adds ~10 kW winter peak demand per home

Fort Collins has room for ~70 MW of additional winter peak demand, Longmont has room for ~ 50 MW

Key Findings

Rocky Mountai

ity Exchange

Keeping electricity prices low relative to gas is the key to heat pump operating economics

Partial displacement measures add significant electricity consumption w/out adding peak load – benefits pay for high rebates

Partial displacement of furnaces with central heat pumps at all efficiency levels offers large carbon savings at low costs

Proper controls configuration enables much higher GHG savings per heat pump

Operating Cost-effectiveness

Rocky Mountain Utility Exchange

Standard Heat Pump Operating Cost Savings by Temperature and Electric/Fuel Price Ratio

A MARKEN COM

ocky Mountain Utility Exchange

Existing Fossil Fuel Recommendations (near)

Focus on partial displacement heat pumps, water heating

- No requirement for full electrification
- No extra rebates for full electrification

Change heat pump/central AC rebates to promote heat pumps

- Stop incenting central AC; require heat pumps for central cooling efficiency rebates
- Remove cold climate requirement for central heat pumps
- Keep ductless rebates
- Offer new base rebate (e.g. \$500-1000) for ANY heat pump installed, regardless of efficiency or commissioning
- Offer additional high efficiency rebate (e.g. \$1000 more) for high efficiency heat pump with controls commissioning

Increase education and support

- Provide customer education/support focused on key benefits, payback, and set expectations
- Provide contractor training/support focused on promoting use of lower switchover temps
- Provide customer education/support focused on heat pump operations (scheduling, maintenance, differences vs gas furnace)

Existing Fossil Heating Recommendations (med/long)

Medium-term

 Consider extra rebate incentives for early retirements of existing fossil equipment

Rocky Mountai

- Develop low-income heating program
- Develop measures to incent use of proper controls to increase usage at colder temperatures (adding lockouts, lower switchover temps, etc.)

Long-term

- For 2028 code implementation cycle, require all central AC installations be heat pumps
- Develop additional offerings focused on full electrification based on improving technologies of various kinds

Measure Screening Details

PCT (Customer):

Rocky Mountain

tility Exchange

- Positive net benefits: customer comes out ahead w/out rebates, negative needs rebate to offset.
- For IQ, negative net benefit needs to be offset with incentive.

RIM (Ratepayer):

- Positive net benefits: ratepayer comes out ahead, negative is red flag
- Difference between Ratepayer Customer = Max Incentive

Community:

- Includes emissions and non-energy benefits
- Positive net benefits: community comes out ahead

CO2 Abatement Cost:

- (Community Test without GHG)/(tons of GHG)
- Lower is cheaper; compare to \$76 in community test

Total Bill Savings; Incremental Cost

- Annual bill savings net of fossil and electric impacts; Positive is good;
- Upfront incremental cost to customer

Winter Peak Demand Impact

- Winter peak impact in kW
- \$1700/kW cost not included in other tests

Lifetime GHG Impacts

- Tons of CO2e saved over life of measure
- Results for measure implemented in 2022 with dropping electricity GHG impacts

Composite Measure Score

- 4/5 are high priority
- 3/2 are low priority or no impact
- 1 is to be avoided

Best opportunity: Replace burned out or new CAC with heat pump, leaving furnace for cold weather

Standard and medium efficiency HP with 30 degree switchover (50% displacement)

															Lifetime	
														Winter	GHG	
									CO2					Peak	impacts	Composite
									Abatement	Tota	al Bill	Incre	mental	Demand	(tons	Measure
Measure	Type	Ŧ	РСТ	-	RIM	-	Community	Ŧ	Cost 👻	Savi	ings 🔻	Cost	*	Impact 🔻	CO2e) 🔻	Score 👻
14 SEER CHP Gas furnace CAC CAC ROF 50% Disp Fort Collins	ROB		\$	(380)	\$ 1	1,236	\$ 2,7	74	\$ (90)	\$	12	\$	450	0	15.9	4
16 SEER CHP Gas furnace CAC CAC ROF - HE 50% Disp Fort Collins	ROB		\$	(196)	\$ 1	1,111	\$ 2,8	395	\$ (93)	\$	29	\$	450	0	16.3	4
16 SEER CHP Gas furnace CAC CAC ROF 50% Disp Fort Collins	ROB		\$ (2	2,196)	\$ 1	1,111	\$ 1,0)95	\$ 18	\$	29	\$	2,250	0	16.3	3

Rocky Mountair

Standard and medium efficiency HP with 20 degree switchover (80% displacement)

															Lifetime	
														Winter	GHG	
									CO2					Peak	impacts	Composite
									Abatement	Т	otal Bill	Incre	emental	Demand	(tons	Measure
Mossuro	Type	_	ост	Ŧ	DIM		Communi	itu 👻	Cost	Ψ C	avinge 🔻	Cost	• •	Impact 🔻	CU39/ 🔺	Scoro 👻
14 SEER CHP Gas furnace CAC CAC ROF 80% Disp Fort Collins	RO B		\$ ((381)	\$ 3	2,033	\$	4,738	\$ (9	9)	\$ 12	\$	450	0	25.8	4
16 SEER CHP Gas furnace CAC CAC ROF - HE 80% Disp Fort Collins	RO B		\$	10	\$ 3	1,777	\$	5,010	\$ (10	3)	\$ 49	\$	450	0	26.7	5
16 SEER CHP Gas furnace CAC CAC ROF 80% Disp Fort Collins	RO B		\$ (1	,990)	\$:	1,777	\$	3,210	\$ (3	5)	\$ 49	\$	2,250	0	26.7	4

We want people to use heat pumps as much as possible – better controls are key!

Adding heat pumps to homes with gas and without AC is not very cost-effective

							CO2 Abatement	То	tal Bill	Incre	emental	Winter Peak Demand Impact	Lifetime GHG impacts (tons	Composite Measure
Measure	Туре	≚ P(ст 🔄	RIN	Λ 🚬	Community 🔄	Cost	Sa	vings 🔻	Cost	*	(kW) 🔄	CO2e) 💌	Score 💌
14 SEER CHP Gas furnace No AC RET 50% Disp Fort Collins	RET	\$	(9 <i>,</i> 082)	\$	2,572	\$ (1,839)	\$ 217	\$	(105)	\$	7,200	0	14.0	2
16 SEER CHP Gas furnace No AC RET 50% Disp Fort Collins	RET	\$	5 (10,932)	\$	2,405	\$ (3,264)	\$ 315	\$	(90)	\$	9,000	0	14.2	2
CC CHP Gas furnace No AC RET 50% Disp Fort Collins	RET	\$	5 (13,542)	\$	2,073	\$ (5,382)	\$ 444	\$	(52)	\$	11,700	0	15.0	2
14 SEER CHP Gas furnace No AC RET 80% Disp Fort Collins	RET	\$	5 (9 <i>,</i> 084)	\$	3,369	\$ 124	\$ 80	\$	(105)	\$	7,200	0	23.9	3
16 SEER CHP Gas furnace No AC RET 80% Disp Fort Collins	RET	\$	(10,542)	\$	2,946	\$ (1,029)	\$ 126	\$	(52)	\$	9,000	0	25.1	3

- Adding heat pumps to homes without AC generally has poor customer and community economics.
- Homes with propane would have a different

Rocky Mountair

v Exchange

Cold climate heat pumps cost A LOT

Measure (Efficient name Baseline heat name Baseline cool name									Winter Peak Demand	Lifetime GHG impacts	Composite Measure
Upgrade type Displacement Case City Name)	r PC	т т	RIM	Communi	- C	O2 Abatement Co 🔻	Total Bill Saving 🔻	Incremental Co	Impact (kW)	(tons CO2e)	Score
CC CHP Gas furnace CAC CAC ROF 50% Disp Fort Collins	\$	(5,140)	\$ 1,071	\$ (1,57	2) \$	\$ 181	\$ 35	\$ 4,950	C	16.4	2
CC CHP Gas furnace CAC CAC ROF 80% Disp Fort Collins	\$	(5,027)	\$ 1,800	\$ 48	2 \$	\$ 67	\$ 46	\$ 4,950	C	26.6	3
CC CHP Gas furnace CAC CAC ROF 100% Disp Fort Collins	\$	(6,112)	\$ 2,337	\$ 71	3 \$	\$ 63	\$ 38	\$ 5,850	10	32.4	1

• Economics are not very good

Rocky Mountai

ty Exchange

- Provide benefits, but incremental cost is much higher, sinking participant economics
- Consider for 100% displacement, but still need to solve backup heat problem

Adding heat pumps to propane-heated homes with boilers = mixed economics

								Winter	Lifetime	
								Peak	GHG	
					CO2	CO2		Demand	impacts	Composite
					Abatement	Total Bill	Incremental	Impact	(tons	Measure
Measure	Туре	PCT 🔹	RIM *	Community T	Cost 🔹	Savings -	Cost 🔹	(kW) 🔹	CO2e) 🔹	Score 🔻
CC DHP Gas boiler Cooling blend RET 50% Disp Fort Collins	RET	\$(13,391)	\$ 1,906	\$ (5,487	\$ 446	\$ (38)	\$ 11,700	0	15.2	3
CC DHP Gas boiler Cooling blend RET 80% Partial Disp Fort Collins	RET	\$(13,279)	\$ 2,635	\$ (3,432	\$ 220	\$ (27)	\$ 11,700	0	25.4	3
CC DHP Gas boiler Cooling blend RET 100% Full Disp Fort Collins	RET	\$(15,363)	\$ 3,172	\$ (4,102	\$ 216	\$ (35)	\$ 13,500	10	31.2	1
CC DHP Gas boiler Cooling blend ROF/New Central Cooling CC DHP 100	ROB	\$(10,363)	\$ 3,172	\$ 398	\$ 72	\$ (35)	\$ 9,000	10	31.2	1
CC DHP Propane boiler Cooling blend RET 50% Disp Fort Collins	RET	\$ (9,725)	\$ 1,906	\$ (395	\$ 104	\$ 312	\$ 11,700	0	20.4	3
CC DHP Propane boiler Cooling blend RET 80% Partial Disp Fort Collins	RET	\$ (7,185)	\$ 2,635	\$ 5,030	\$ (63)	\$ 555	\$ 11,700	0	34.0	4
CC DHP Propane boiler Cooling blend RET 100% Full Disp Fort Collins	RET	\$ (7,803)	\$ 3,172	\$ 6,397	\$ (68)	\$ 687	\$ 13,500	10	41.8	1
CC DHP Propane boiler Cooling blend ROF/New Central Cooling CC DHP	ROB	\$ (2,803)	\$ 3,172	\$ 10,897	\$ (175)	\$ 687	\$ 9,000	10	41.8	1

- A cold-climate ductless heat pump displacing propane boiler usage has poor participant economics (but maybe not so bad after the Inflation Reduction Act!)
- Other economics are strong

Rocky Mountan

Adding heat pumps to propane-heated homes with boilers = mixed economics

- A cold-climate ductless heat pump displacing propane boiler usage has mixed participant economics (but maybe not so bad after the Inflation Reduction Act!)
- Other economics are strong

ocku Mounta